

Search for Local Parity Violation in High-Energy Nuclear Collisions

Nu Xu

Outline

- (1) What at the Questions
- (2) Recent Results from STAR
- (3) Next Step

QCD and Chiral Magnetic Effects

Strong interactions conserve parity. However, due to the topological structure in QCD, it is not forbidden to have parity (P) violating effect locally in a hot and dense state, where Chiral symmetry is restored. Each of the P-violating effect is restricted within a domain and domains are distributed randomly along a direction determined by its chromoelectric (E_C) and chromomagnetic (E_C) fields.

The Question

In the non-perturbative sector, study the structure of QCD vacuum:

- (1) Chiral symmetry restoration
- (2) Deconfinement
- (3) Formation of QGP in high-energy nuclear collisions
- (4) ...

Local Parity Violation in QCD

(b) Strong interaction parity violation **RP**

 Theory predicts, if parity is violated in strong interaction, one should observe charge separation w.r.t RP.

In Non-Central Heavy Ion Collisions

- (1) The QCD \boldsymbol{E}_C and \boldsymbol{B}_C should have the same symmetries as \boldsymbol{E} and \boldsymbol{B}
- (2) In non-central high-energy nuclear collisions, the **global angular momentum** direction could serve as the direction of the chromomagentic field. The local **P**-violating process may be observed through correlation measurements w.r.t. the reaction plane.

In Non-Central Heavy Ion Collisions

In case of **P**-violating, due to symmetry, we can test it at opposite rapidity windows:

- x > 0 and $p_z > 0$
- x < 0 and $p_z < 0$

I. Experimental study of spontaneous strong parity violation in heavy ion collisions at RHIC

S. Voloshin et al.

http://orion.star.bnl.gov/protected/bulkcorr/voloshin/parity/paper/v26/paper.pdf

Dividing out RP resolution

$$\langle \cos(\phi_a + \phi_\beta - 2\phi_c) \rangle = \langle \cos(\phi_a + \phi_\beta - 2\Psi_{RP}) \rangle v_{2,c}$$

$$|\eta| < 1.0$$
 (Main TPC)
2.9 < $|\eta| < 3.9$ (FTPC)

Assuming: particle c not correlated with α and β , only with the R.P.!

$$\langle \cos(\phi_{\alpha} + \phi_{\beta} - 2\phi_{c}) \rangle$$

$$\langle \cos(\phi_a + \phi_\beta - 2\Psi_{RP}) \rangle$$
.

Data vs. Model Predictions

- Large difference in likesign vs. unlike-sign correlations in the data compared to models that has no PV implemented.
- Bigger amplitude in likesign correlations compared to unlike-sign.
- Like-sign and unlikesign correlations are consistent with theoretical expectations

Pros and Cons

(1) **Pros**:

(2) Cons:

- P-even observable
- vulnerable for many sources of physical background

II. Charge Asymmetry w.r.t. Reaction Plane

Quan Wang and Fuqiang Wang

http://www.physics.purdue.edu/~wang187/doc/pv/bulk_20090513_Asym.pdf http://www.physics.purdue.edu/~fqwang/protected/bulkcorr_20090506_cluster.pdf

II. Direct PV Observable

$$A_{\pm,UD} = \frac{N_{\pm,up} - N_{\pm,down}}{N_{\pm,up} + N_{\pm,down}}$$

$$A_{\pm,UD} = \frac{N_{\pm,up} - N_{\pm,down}}{N_{\pm,up} + N_{\pm,down}} \qquad A_{\pm,LR} = \frac{N_{\pm,lef\ t} - N_{\pm,right}}{N_{\pm,lef\ t} + N_{\pm,right}}$$

Charge Asymmetry: Results

- If + and are uncorrelated, $\langle A+A-\rangle = \langle A+\rangle \langle A-\rangle \sim 10^{-7}$ from $\langle A+\rangle \langle A-\rangle \langle A-\rangle \sim 10^{-7}$ from $\langle A+\rangle \langle A-\rangle \langle A-\rangle$
- **P**-violating expectation: <A+A-> < 0.
- Data: <A+A-> \sim 10⁻³, + and are positively correlated \sim a few% asymmetry

→ Asymmetry data inconsistent with PV

Pros and Cons

- (1) **Pros**:
 - Direct PV observable
- (2) Cons:
 - Sensitivity yet to be studied

Nest Step:

(1) Sergei: Evidence for local strong parity violation in heavy ion collisions at RHIC

(2) Fuqiang: Asymmetry data inconsistent with PV